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I. Problems studied

\\) The following problems have been studied:
Conre 7S¢ 1.7 Convergence to travelling waves of solutions of nonlinear

-

e

diffusion equations.
-2: Stability of travelling pulses of systems of reaction-diffusion

equations.’

3+ The relation between the inverse scattering method for nonlinear
wave equations and connection problems for certain nonlinear
ordinary differential equations. . /

4. Stokes' conjecture concerning the existence of a wave of greatest ;

height and the angle of its slope.

A surmary of the results obtained follows in the succeeding

sections.
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1. Convergence to travelling waves of solutions of nonlinear diffusion
equations

It was indicated in the proposal for the current grant that Fife and
McLeod had announced results in [1] which effectively answer the problem in
the following case.

Let us take the equation

(1.1) L TR f(u) = 0 (= < x <=,t > 0)

t

with the initial value
u(x,0) = g(x) .
Suppose that f €C'[0,1], with
(1.2) £(0) = £(1) = O
and
(1.3) f(u) <0 for 0<u<a<l, f(u>0 for a<u<l,
(1.4) £'(0) <0, £'(1) <0 .

There is then one and (except for translation) only one wave U(x-ct)
with U(<) = 0, U(+») = 1 , and the solution u(x,t) will converge
exponentially fast to a specific translation of this travelling wave
if the initial function ¢ satisfies 0< <1 eand

1im g(x) <a, Um g(x) >a.

X= - X=+®




There &re zlso results which cover ihe cases where, for example, ;‘ is of
compact suppcrt or where f , while still satisfying f£'(C) <O and
£'(1) < 0 , has more internal zeros in (0,1) than just o .

These results have now been placed in final form, and have appeared
in [2] .

The method used in [2] is to apply the maximum principle in associa-
tion with the equation (1.1). An alternative approach, however, is to
transform the problem to phase plane variables, so that the independent
variebles are u and t and the dependent variable p = u . In the
first instance this is possible only if the initial function £ in mono-
tone (which implies that u(x,t) is monotonic in x for all t ) , but
this restriction can be avoided. By applying the maximum principle to
the diffusion equation transformed in terms of the phase plane variables,
the results of [2] can be extended effectively to any f for which
£(0) = £(1) = 0 . A first report on this has been prepared in [3] and a
record is in preparation. In this area the objectives cited in the

original proposal have been fully realized.




2. Stability of travelling pulses of systems of reaction-diffurion eguations

Work here has been restricted to the Fitzhugh-Nagumo system

uo=u o+ f(u) ~w,

(2.1)

w, = eu ,

where f satisfies the conditions (1.2-4) and e 1is a small positive para-
meter. Expanding on work by Hastings (L), we have shown that there exist
two travelling pulses for this system, i.e. non-trivial solutions

(u(x,t) yw(xyt)) = (U(x-ct),W(x-ct)) with
Ux=) =0, Wk=) =0 ,

and that one has a slow speed for small ¢ , while the other has a speed
which does not tend to zero as ¢ 0 . We have investigated the behavior
of these pulses and so have been able to treat (2.1) as a singular perturba-
tion of (1.1) and show that the slow pulse is unstable and the other pulse
stable. Two reports on this are in preparation and again the objectives

of the original proposal have been fully realized.




3. The relation between the inverse scattering method for nonline:r wave
equations and connsction problems for certzin nonlinear ordinary
differential eguations

The equation

(3.1) ¥ -xwe=yvl% ,

e ot aal S at Ll i

where @ is a positive constant, arises in plasma physics, and for a = 2,
the most important case, it is known as the second Painlevé transcendent
and yields similarity solutions to the well known Korteweg-de Vries equation.

If solutions are sought which satisfy the boundary conditions

y(®) =0 ,

y(x)"(--;«)l/a a3 X~ - ,

then it can be shown that there exists a unique such solution, and a

corresponding constant k(a) such that as x—=+= ,
y(x) ~k(a)As(x) ,

Ai(x) being Aroy's function. To determine k(@) is a connection problem
for the nonlinear equation (3.1), and would expect that obtaining a value
for k(a) by analytic means would be impossible. However, numerical
calculations had indicated strongly that, in the case « = 2, we have

the surprising result that k(2) = 1 , and we have been able to establish
this analytically by exploiting both the relationship betwecen (3.1) and
the Korteweg-de Vries equation, and also the inverse scattering method for

solutions of the Korteweg-de Vries equation.




Tt seams clear that these ideas extend to other nonlineur wave equations

which can re solved by inverce scattering and to the associated ordinery

differentisl equations saticfied by their similarity solutions, end there

is alco a closc link betwean these ordinary differential equations and the

class of Foincaré transcendents. One report on this work has appeared in

(5], and further work is in progress.




L. Stokes' conjecture concerning tne existence of a wave of grentest height
and th> angle of its slope

Consider the problem of a wave of constant periodic form moving with
constant velocity on the surface of 2 non-viscous fluid which is either of
infinite depth or on a horizontal bottom. This was reduced by Nekrasov [6]
by complex variable methods to the discussion of the integral equation

sin%( stt)
dt

(k.1) 4(s) = _3_1; j'ﬂ sin g(t) 1o

t At
u.-1+ j' sin g(u)du sm-2-( s-t)
0

if the depth is infinite, and to another similar equation of the depth is
finite. Here ;5( s) 1is the angle between the wave surface and the hori-
zontal at the point or the surface corresponiing to the independent variatle

s , and the crest of the wave occurs at s =0 and the length at s =1 .

The constant u 1is given by

38"c
= 3

2nQ
where g is the acceleration due gravity, A the wave-length of the
periodic wave, ¢ the speed at which the wave form is progressing, and
@ the spead of particles at the crest of the wave. The case u = ®(¢@=0)
thus corresponds to a stagnation point at the wave crest and is also the
case in vhich, for given c¢ , the wave reaches the greatest height above

mean level. In 1880 Stokes [7] conjectured that there exists a wave in this

limiting case, but that it is peaked instead of smooth-crested, and that

at the peak the wave makes an angle %x with the horizontal i.e.




e .

; i |
L n im / = 3 <
(4.2) lim £s) %

el O

Two further conjectures were made by Krasovskii [8] in en investigation of
the existence of solutions of (4.1) for finite u . The key role pleyed
by an inequelity |#| <-é-n in his own work led him to hypothesis in
essence that

(1) as sup i,‘(s)' t%x , the solution tends to Stokes' limit

s € [0,n]

solution, and

(2) there is no solution for which sup |A(s)] > %n :
s € [O,n]

Toland [9] has recently proved that there does indeed exist a solu-
tion in the limit case, but his proof is complicated. Further, doubt has
been thrown or the validity of Krasovskii's conjectures by some numerical
work by Longuet-' Higgins and Fox [10!. We have succeeded in producing
a simpmler proof of existence than Toland's, and have also established by
rigorous analysis that Krasovskii's conjectures are indeed false, in
that, for u sufficiently large it must be the case that cup|g] >3 n .
This does not invalidate Stokes' original conjecture (4.2), for |o}
exceeds %‘-n only is a boundary layer which disappears in the limit
es p—® 3 but it does emphasize that the passage to the limit is a deli-

cate one, and (4.2) itself, althouch presumably true, remains unproved.
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